

Team Members: Lawrence Livermore National Lab, University of Arizona

Project Goal

Cast-in-place carbonate cement concrete that cures via microbial activity to create monoliths of any length scale.

Annual Meeting
October 13 & 14, 2021

Total project cost:	\$2.9M
Current Q / Total Project Qs	Q9 / Q12

The Team

- ▶ Rutgers University (RU) **Richard Riman**, Daniel Kopp, Paniz Foroughi
 - Cement & Concrete formulation, curing, and testing
 - Tech2Market Analysis
- ▶ Lawrence Livermore National Labs (LLNL) **Yongqin Jiao**, Mimi Cho Yung, Michael Guzman, Michael Homel, Jaisree Iyer
 - Microbial Engineering
 - Mechanical & Chemical Modelling
- University of Arizona (UofA) Hongyue Jin, Nighat Chowdhury
 - Process optimization for sustainability
 - LCA & TEA

Richard Riman

Yongqin Jiao

Hongyue Jin

Background (Carbonate Cement)

Carbonate Cement (CaSiO₃) – cement cures via a CO_2 gas aqueous solution reaction with $CaSiO_3$ to create a durable carbonate-bonded structure.

- Invented at Rutgers
- Commercialized by Solidia Technologies
- Process has thickness limitations
- Requires CO₂ supply chain

- A. Pack particles of CaSiO₃
- B. Infiltrate particle bed with CO₂
- C. Pore-bound reactive crystal growth fills pores

 $CaSiO_3 + CO_2 \rightleftharpoons CaCO_3 + SiO_2$

Rutgers Cement IP Database (US Only, filings in 19 Regions)

US Patent #/Publication #/US Serial #	Title	Earliest Priority Date
US 9,216,926	Synthetic Formulations And Methods Of Manufacturing	06/09/11
US 8,313,802	Method of Hydrothermal Liquid Phase Sintering Of Ceramic Materials And Products Derived Therefrom	11/15/07
US 8,709,960	Method of Hydrothermal Liquid Phase Sintering Of Ceramic Materials And Products Derived Therefrom (D)	11/15/07
US 8,114,367	Systems And Methods For Carbon Capture And Sequestration And Compositions Derived Therefrom	11/15/07
US 8,721,784	Systems And Methods For Carbon Capture And Sequestration And Compositions Derived Therefrom (D)	11/15/07
US 9,095,815	Systems And Methods For Carbon Capture And Sequestration And Compositions Derived Therefrom (C)	11/15/07
US 9,266,147	Precursors And Transport Methods For Hydrothermal Liquid Phase Sintering	10/01/12
US 9,868,667	Bonding Element, Bonding Matrix And Composite Material Having The Bonding Element, And Method of Manufacturing Thereof	03/05/11
US 10,266,448	Bonding Element, Bonding Matrix And Composite Material Having The Bonding Element, And Method of Manufacturing Thereof (D)	03/05/11
US 10, 315,357	A method of producing a monolithic body from a porous matrix includes using low temperature solidification in an additive manufacturing process.	10/6/13
US 2014/0272216 (Allowed)	Aerated Composite Materials And Methods Of Production Thereof	03/13/13
16/257,544	Bonding Element, Bonding Matrix And Composite Material Having The Bonding Element, And Method of Manufacturing Thereof (C)	03/05/11
US 2019/0039960	Aerated Composite Materials And Methods Of Production Thereof (C)	03/13/13
WO 2016/112022	Sustainable Supply of Recipe Components	01/05/15

(D): Divisional

(C): Continuation

The Concept

Objective: develop a castable/pourable, self-curing carbonate cement concrete using CO₂ produced internally via microbes

Summary

- A mix containing bacteria, low-carbon cement, & aggregate
- Activated by addition of nutrient solution to mix
- CO₂ released by bacteria hardens concrete
- Any thickness can be cast and solidified

Impact

- CO₂ emissions reduced by up to nearly 3 Mt/y
- Reduced time and cost to complete construction projects
- Eliminates need for a CO₂ supply chain
- Viable cast-in-place technology

Cast-in-place (Microbial)

Decreasing length scale

What is new about this project in the world of microbial curing?

Prior work

- Cells were used to cure aqueous solutions of calcium
- All microbial work reported to date produces materials w/unacceptable mechanical properties (<5 MPa)</p>
- Common concrete formulations not demonstrated

This Program

- Cells are used to cure cement particles sparingly soluble in aqueous solution
- Probes the possible origins of poor mechanical properties
- Examines properties of cement, mortars and concrete systematically

Project Objectives

- Select a microbial strain:
 - Produces CO₂ from a nutrient
 - Tolerant of cement solution conditions & processing conditions
- Engineer the chemistry and microstructure to facilitate the microbial curing mechanism in both slurries and monoliths
- Develop a predictive model correlating microstructure w/mechanical performance
- Perform LCA & TEA to ensure no environmental or economic RED-FLAGS

Challenges and Risks

Challenges:

- Concrete processing creates basic pH conditions that are detrimental to microbial viability
- Microbe and nutrient site occupancy needs to be in "the right place at the right time"

Risks:

- CaCO₃ precipitation is rate-limited by pH and Ca-solubility
- Poor microbial viability in concrete processing conditions
- Microstructure and surface chemistry degrade strength
- Microbial production cost is too high

Project Timeline

0 – 12 Months

Milestones Achieved

- 1.Microbial strain downselected
- 2.Generated thermodynamic and kinetic models
- 3.Generated microstructure pore-microbe-cement model
- 4.Sufficient carbonation of CaSiO₃ cements

12 - 24 Months

Milestones Achieved

- Commercially viable storage & processing methods for microbes
- 2.Concrete with 10 MPa compressive strength (2"x2"x2" cylinders)

24 – 36 Months

Milestones in Progress

- 1. Scalable microbial concrete formulation
- 2. Cast & Cure concrete (4"x8")
- 3. Performance metrics:
- Cl- Permeability (<<5000 C)
- Compressive Strength (>25 MPa)
- Flexural Strength (>6 MPa)
- Creep measurement

First Markets?

- Anchors
- Sidewalks
- · Road-beds
- Curbs
- Pre-cast (thick)
- Concrete Repair

Start

End

29 months elapsed

Results - Cement is a harsh environment for biology

- pH easily surpasses 11 to kill cells, best below 9
- Carbonation exotherm can kill cells about 70°C
- Cell strain was down-selected & viability (cell survival) was demonstrated for all practical concrete processing conditions

Results – Carbonation and Strength

- Carbonation on the order 70% of theoretical is possible
- Strength between 20-40 MPa is possible
- ► CaSiO₃ cannot be used as a source of calcium to achieve these results

Technology-to-Market

- Commercialization Strategy: License technology for curing operations
- Potential First Markets: Anchors, Sidewalks, Road-beds, Curbs, Pre-cast (thick), Concrete Repair

Potential Partnerships – Research Needs

- Standardized Concrete Testing
- Concrete Processing
- Microstructure-strength Simulations
- Fractography
- In Situ Environmental SEM
- MR-CT Imaging Of Concrete
- Energy-dispersive X-ray Diffraction Under Mechanical Load

Summary

- A formulation has been defined containing bacteria, low-carbon footprint cement, & aggregate
- CaSiO₃ cannot be used in these formulations
- The formulation has the potential to carbonate ~70% of theoretical
- Strengths greater than 20 MPa are possible with cements and mortars
- Concrete work is next...

Thank you Joseph King & the ARPAe team (Madhav Acharya, Kate Pitman, Sean Vail, Rosemary Cox-Galhotra) for the helpful suggestions and generous ARPAe support!

https://arpa-e.energy.gov